Esegui ricerca
13 September 2010

The Precious Commodity Of Water

Diminuisci dimensioni testoAumenta dimensioni testo Bookmark and Share
Water is a valuable resource, which is why the Fraunhofer Alliance SysWasser is demonstrating how we can extract precious drinking water from air, discover a leak in pipeline systems and even effectively clean sewage water at the IFAT/Entsorga fair
As the General Assembly of the UN resolved on July 28 of this year, clean drinking water and basic sanitary provision are human rights. Unfortunately, there are more than one billion people all over the world who do not have access to drinking water, while as many as 2.6 billion people live without any sanitary systems at all - that is well over one-third of the world's population.

Not only that, water is a pre-eminent economic factor because agriculture and industry consume more than four-fifths of this precious commodity these days. A study by the UN indicates that in future water will be more important in strategic terms than petroleum.

This is the reason why 14 Fraunhofer institutes have joined forces in the Fraunhofer Alliance SysWasser to come up with sustainable water system technologies. They will be unveiling "Research for Tomorrow's Water Utilization" in hall A4, stand 201/302 at the IFAT/Entsorga fair.

Drinking Water from the Air
Drinking water can be extracted from the humidity in the air even in the desert or in the middle of a megacity, which is made possible by a technology developed by Fraunhofer. The principle behind it is a salt solution that runs down from a tower-shaped system and absorbs water from the air.

The hygroscopic brine is then pumped into a tank that stands a couple of meters high and contains a vacuum. Then, energy from solar collectors heats up the brine and the evaporated salt-free water condenses over a distillation bridge. The brine concentrates again and flows down on the surface of the tower to absorb humidity in the air.

This process is exclusively based on regenerative sources of energy such as simple solar collectors and photovoltaic cells, meaning that this method is completely energy self-sufficient.

That means that it functions in areas where there is no electrical infrastructure. This process is particularly well suited for extracting drinking water in arid and semi-arid areas where more water evaporates than precipitation falls.

(TerraDaily)

Read more