Esegui ricerca
08 October 2010

Stem Cells Shape Up to Their Surroundings

Aumenta dimensioni testoDiminuisci dimensioni testo
Many scientists aspire to take control over the stem cell differentiation process, so that we can grow organs and implants perfectly matched to each patient in the future.
Now research in the Journal of Tissue Engineering, published by SAGE-Hindawi, explains how engineering the topography on which stem cells grow, and the mechanical forces working on them, can be as powerful an agent for change as their chemical environment.

Stem cells respond to the stiffness, chemistry and topography of the environments they find themselves in -- and scientists building their understanding of the complex signalling controlling these responses hope to harness this knowledge to take stem cell research further. As well as increasing the potential to guide stem cells to create desired materials for research and clinical applications, using nanoscale topographies could eliminate (or alternatively enhance) steps including those involving feeder layers and synthetic induction supplements currently used in stem cell culture. In addition, tomorrow's increasingly sophisticated prosthetics for regenerative medicine could feature surfaces with varied tissue zones for different purposes, thanks to this improved understanding.

In their article, Laura McNamara of the University of Glasgow, UK, Centre for Cell Engineering, together with colleagues from Columbia University, New York, Nanotechnology Centre for Mechanics in Regenerative Medicine and the Bone and Joint Research Group at the University of Southampton, UK, review the latest developments in the use of nanotopography to direct stem cell differentiation. In particular they look at skeletal (mesenchymal) stem cells.

Evidence is mounting that researchers can both maintain stem cells in the undifferentiated state, and determine the direction of their fate, by precise control of the surface features beneath them. Stem cells have an uncanny ability to detect and respond to nanoscale grooves, pits and ridges, and are particularly sensitive to the spacing and regularity of these features.


(ScienceDaily)

Read more
youris.com provides its content to all media free of charge. We would appreciate if you could acknowledge youris.com as the source of the content.