11 May 2010

Untangling the Quantum Entanglement Behind Photosynthesis

Aumenta dimensioni testoDiminuisci dimensioni testo
The future of clean green solar power may well hinge on scientists being able to unravel the mysteries of photosynthesis, the process by which green plants convert sunlight into electrochemical energy.

To this end, researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC), Berkeley have recorded the first observation and characterization of a critical physical phenomenon behind photosynthesis known as quantum entanglement.

Previous experiments led by Graham Fleming, a physical chemist holding joint appointments with Berkeley Lab and UC Berkeley, pointed to quantum mechanical effects as the key to the ability of green plants, through photosynthesis, to almost instantaneously transfer solar energy from molecules in light harvesting complexes to molecules in electrochemical reaction centers. Now a new collaborative team that includes Fleming have identified entanglement as a natural feature of these quantum effects. When two quantum-sized particles, for example a pair of electrons, are "entangled," any change to one will be instantly reflected in the other, no matter how far apart they might be. Though physically separated, the two particles act as a single entity.

"This is the first study to show that entanglement, perhaps the most distinctive property of quantum mechanical systems, is present across an entire light harvesting complex," says Mohan Sarovar, a post-doctoral researcher under UC Berkeley chemistry professor Birgitta Whaley at the Berkeley Center for Quantum Information and Computation. "While there have been prior investigations of entanglement in toy systems that were motivated by biology, this is the first instance in which entanglement has been examined and quantified in a real biological system."

(Science Daily)

Read more

youris.com provides its content to all media free of charge. We would appreciate if you could acknowledge youris.com as the source of the content.