Esegui ricerca
18 March 2010

Switch Mechanism Controls Cell Traffic

Diminuisci dimensioni testoAumenta dimensioni testo Bookmark and Share
Scientists have identified a mechanism that switches on an extremely important process for the proper functioning and survival of our body's cells

Specifically, the fast-track transportation pathway of 'cargo' to and from the surface of the cell. Defects in this trafficking pathway can have severe consequences, leading to numerous diseases such as high cholesterol, neuropathies, sterility and complications in immune response. Understanding the mechanisms underlying these disorders is crucial to developing possible treatments and new therapeutic strategies.

Dr. Peter McPherson and Dr. Brigitte Ritter and their colleagues have discovered how a molecule called Rab35, which acts as a switch is turned on in order to activate the fast-track recycling pathway – in which cargo that needs to be recycled back to the surface of the cell is rapidly selected and transported. The new study, published in the prestigious journal Molecular Cell, was conducted at The Montreal Neurological Institute and Hospital – The Neuro, McGill University.

"The cells that make up our bodies are like a busy city," says Dr. McPherson, neuroscientist at The Neuro and the co-principal investigator for the study. "The cell surface is defined by a membrane that separates its interior from the external world, like the walls or borders of a city. Within this environment, there are simultaneous trafficking pathways that transport vital nutrients, receptors and other components required for cells to function, within cargo vehicles called 'vesicles.' Like traffic in a city, these 'cargo' vesicles travel at different speeds to numerous destinations within the cell with different purposes. For example, the receptors on the cell surface that bind to cholesterol are on the fast track pathway, so that once they deliver the cholesterol inside the cell, they move back to the surface quickly so that they can pick up some more. It is therefore crucial to understand the controls and switching mechanisms of trafficking inside cells, as this system is of vital importance to the proper functioning of the b

(redOrbit)

Read more