Now, a team of European scientists, working in the frame of the EUREKA project ModPolEUV, has made a promising contribution to reconstructive surgery, thanks to an original multidisciplinary approach matching cutting-edge medicine to the latest developments in nanotechnology.
According to the World Health Organisation (WHO), an estimated 322,000 deaths globally per year are linked to severe injuries from fire and in many of these cases death could have been avoided with surgical intervention.
In this type of intervention, when major burn patients have insufficient skin left to graft on the most damaged part of their body, new skin has literally to be grown from the patient's own skin cells. However, the long delay in growing the skin can expose the burns patient to increased risk of infection and dehydration; so to help those cells to multiply, specialists use a particular kind of component called polymeric material. Because of their extraordinary range of properties, polymeric materials play a ubiquitous role in our daily life. This role ranges from familiar synthetic plastics: plastic bags or yoghurt cups, to natural biopolymers such as wood or proteins that are present in the human body.
(ScienceDaily)
Read more
youris.com provides its content to all media free of charge. We would appreciate if you could acknowledge youris.com as the source of the content.